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Abstract-A seven parameter shell model of the interatomic forces in the NaCllattice is used to make 
a detailed lattice dynamics calculation at arbitrary volume, for fourteen alkali halides. The calculated 
normal mode spectrum gives an explicit vibrational contribution to the pressure and the elastic 
constants in the quasiharmonic approximation. The seven parameters are chosen to fit low pressure 
ultrasonic data and the low and high frequency dielectric constants. Prediction of the Griineisen 
parameter ,)" (iiln')'/iiln V), and 8, = (- 1/{3B, )(dB,/dT) are in reasonable agreement with experiment. 
The calculated,), decreases monotonically with volume. Calculated Hugoniots are in good agreement 
with experiment for NaCI, NaBr and NaI, and in fair agreement for LiBr, LiI and NaF. 

I. INTRODUCTION 

Theoretical equations of state are of great impor­
tance to high pressure physics. They permit inter­
polation and extrapolation into regions in which 
experimental data is sparse or lacking. They help in 
planning future high pressure experiments and they 
are important in comparing static high pressure ex­
periments with shock wave experiments, in which 
case the treatment of thermal effects at high pres­
sure is particularly important. 

Thermal effects in the equation of state can be 
treated to a high degree of accuracy through the 
Mie-Griineisen equation of state, one form of 
which is 

p = p + 'Y, E V;b 

V 
(1) 

where P is the pressure, P the pressure of the static 
non-vibrating lattice, E V;b is the vibrational energy, 
V the volume, and 'Yo is one of the Griineisen 
parameters. If the energy due to phonon-phonon 
interactions is neglected , then in the high tempera­
ture limit E V;b is a linear function of temperature at 
constant volume, and 'Yo equals the thermodynamic 

*Work done under the auspices of the U.S. Atomic 
Energy Commission. 

t Present address. 

Griineisen parameter and is a function of volume 
only. The treatment of thermal effects at high 
pressure thus depends mainly upon how 'Y varies 
with V. In the past, typical assumptions have been 
'Y = 'Yo, a constant, 'Y! 'Yo = I - q (Vo - V)! Y o, or 'Y = 
'Yo( V I Vo)q, where q is of the order of unity. There 
has been little justification for this type of assump­
tion, and several authors [1,2] have recently 
pointed out that there is a great deal of uncertainty 
about how 'Y varies with volume. 

Many authors have shown that lattice-dynamics 
calculations, based on a simple atomic model and a 
summation over all modes of vibration can accu­
rately predict the Griineisen parameter at zero 
pressure as a function of temperature [3-11] and 
calculate its volume derivative[12, 13]. However, 
none of these authors have extended this type of 
calculation to the high pressure-high temperature 
regime. On the other hand, several authors have 
used an assumed interatomic energy function to 
predict the equation of state and elastic constants at 
high pressure[14-22] , but with the exception of a 
preliminary report on the present work [23], they 
have not calculated the Grtineisen parameter con­
sistent with this potential function , and their equa­
tions have usually been limited to a single isotherm. 

In the present paper, an interatomic potential 
energy function is assumed and used to calculate 
not only the equation of state and elastic constants 
but also the Grtineisen parameter and other thermal 
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properties at arbitrary volume and temperature . 
Thermal contributions to the pressure and elastic 
constants are calculated in the quasi-harmonic ap­
proximation. An important aspect of the present 
calculation is that while the form of the interatomic 
potential function is assumed, its arbitrary parame­
ters and hence the strength of its individual terms 
are determined so that the model is in agreement 
with the elastic constants and their pressure deriva­
tives at zero pressure. If a correct assumption has 
been made for the form of the interatomic poten­
tial , this fitting of parameters certainly gives the 
model the best chance of predicting equation of 
state, Hugoniot curves and various other ther­
modynamic properties of the alkali halides at high 
pressures. 

An alternative approach to the determination of 
the equation of state at high pressure is finite strain 
theory, which has recently been extended by 
Thomsen [24-27] to include the high pressure-high 
temperature regime. It makes no assumptions about 
the nature of the interatomic forces and is thus 
applicable to a wider range of materials than the 
present lattice model calculation. However, it 
requires a great deal of experimental data as input, 
much of which is not presently available for most 
compounds, and it is apt to be inaccurate at low 
temperatures. Lattice theory and finite strain 
theory are thus presently complimentary to each 
other, with each one applicable to some compounds 
which are presently inaccessible to the other. 

2. THE LATTICE MODEL 

For the present calculation it was assumed that 
the potential energy per atom pair of the alkali 
halides, 4>0 is given by 

The first summation over all lattice sites involves 
the electrostatic energy. The second summation 
over nearest neighbors (NN) involves the repulsive 
interaction between unlike ions arising from the 
Pauli exclusion principle and the kinetic energy of 
the electrons, and the third summation involves the 
van der Waals and repUlsive interaction between 
next nearest neighbor (NNN) anions. The separa­
tion of the appropriate pairs of ions is 'if, e is the 
electron charge, and Z, b+_, b __ , p+, p_ and Care 
assumed to be constants which vary from com-

pound to compound. This potential is similar to that 
used by several others in high pressure 
calculations [18, 19, 28-31]. Demarest[21, 23] and 
Sammis [20, 22] used alternatively a Lennard-Jones 
six-twelve potential between anions . Although it 
has not been shown whether the exponential or 
power law gives a better representation of the 
repulsive force between ions, it is probably more 
consistent for both the NN and NNN terms to be 
of the same form. 

In addition the shell model formalism was used to 
permit the anion to be polarizable. In this formal­
ism, the anion is assumed to consist of a spherical 
massless shell of charge Y through which short 
range forces with neighboring ions act, and a heavy 
ion core, bound to the shell with an isotropic spring 
of spring constant k. Both Y and k were assumed 
to be independent of volume. 

A major defect of this model is that it has only 
central two-body forces, and therefore cannot be 
made to fit the three independent elastic constants 
of the cubic system exactly. Although several mod­
els have been developed such as the breathing shell 
model [32] which claim to solve this problem, they 
are only strictly applicable when C'2 - C •• - 2P < 0, 
which is not the case for most of the alkali-halides, 
most notably RbF. Moreover, unlike the central 
force interactions assumed in the present study, it 
would be difficult to decide how many of these 
interactions should vary over a wide change in 
volume. Fortunately, for most alkali-halides the 
central force approximation is nearly correct and 
the present calculations will not be seriously in 
error. 

The usual shell model equations [for example, 
33], simplify to give the dynamical matrix D, whose 
eigenvalues are the squared circular frequencies 
w2 

D = [y'mr'(R + ZCZ - [R + ZCY] 
x [R + k + YCyr '[R + YCZ])[y'mr ' (3) 

where Rand C are six by six matrices describing 
short range and coulombic interactions, Z and Y, 
are diagonal matrices giving the ionic and shell 
charges, and [Ym] is a diagonal matrix of the 
square root of the ionic masses . The Rand C 
matrices are calculated by the summation 

(4) 

where the indices /-L, v = 1 or 2 refers to the anion or 
cation, separated by the vector r , and k is the 
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wavevector. <l>R indicates that only the short range 
(non-Coulombic) terms in (2) are used. The C 
matrix has a similar definition with <l>R replaced by 
the coulombic energy <l>c. 

The exact equations for calculating the compo­
nents of the R matrix for the NaCllattice as well as 
the elastic and dielectric constants are well 
known [33-35]. The pressure, P, can be obtained 
from the straightforward differentiation of (2). 
KeIJermann [36] has described in detail the proce­
dure for calculating the C matrix. 

3. THERMAL EFFECTS 

3.1 The quasi-harmonic approximation 
In the harmonic approximation, the total energy 

of the crystal is given by 

<I> = <i> + L hVi(1/2 + 1/(ekv
/
kT -1)) (5) 

where <i> is the energy of the static (nonvibrating) 
lattice given by (2) and the Vi are the frequencies of 
vibration of the normal modes. In the quasi-har­
monic approximation, the frequencies are assumed 
to be functions of volume but not of temperature, 
and interactions between phonons are neglected. 
The pressure is then given by 

where 

~ 'YiEi 
"1.=-­

E ' ;b 

E ';b= L Ei 
i 

Ei = hVi(1/2 + 1/(ekv
/
KT 

- 1)). (6) 

The mode Griineisen parameters 'Yi == (a In v;/ a 
In V) were calculated directly from the eigenvec­
tors of the normal modes and the volume derivative 
of the dynamical matrix by the application of first 
order perturbation theory [37,9]. Except in the high 
temperature limit, "1. differs from the thermal 
Griineisen parameter, 'Yth which is given by 

*The experimentally measured elastic constants discus­
sed in this paper are the same as Thurston's [39] "effective 
elastic constants", or WaJlace's[37, p. 21] "stress strain 
coefficients", while I have made the assumption that 
Wallace's "elastic constants", (Thurston's C •. km ) are not 
affected by temperature. Conversion of shear constants 
from the former to the latter involves the addition of the 
pressure, P. 

_ VI3K _" 'YiC'i 'Yrh = -- - L.J --
C, i "'C . 

L..i VI 

(7) 

13 is the volume thermal expansion coefficient, KT is 
the isothermal bulk modulus, C. is the heat capac­
ity at constant volume, and C'i is the mode con­
tribution to the specific heat given by 

(8) 

The summations over the normal modes were ap­
proximated by a properly weighted [38] average 
over forty seven non-equivalent wavevectors in the 
irreducible one forty-eighth of the first Brillouin 
Zone. 

The thermal contributions to the isothermal and 
adiabatic bulk moduli and their pressure derivatives 
were determined by numerical differentiation of the 
thermal pressure, evaluated at different volumes, 
with the conversion from the isothermal to the 
adiabatic bulk modulus being made by the relation 

K, = K + 'Y ;~C'. (9) 

There is a quasi-harmonic contribution to the shear 
elastic constants which depends on the second de­
rivative of the mode frequencies with respect to 
shear strain. Although this contribution is not 
strictly negligible, it would require a great deal of 
computation and has been neglected in the present 
study. There is still a thermal contribution arising 
from a second order volume change under shear 
strain, which has been taken into account.* The 
vibrational contribution is thus given by 

C C
- 'Y.E vib 

shear = shear - -V' (10) 

3.2 Higher-order thermal effects 
In this paper higher-order thermal effects have 

been neglected. These include the effect of three 
and four phonon interaction, or, equivalently, the 
contribution to the energy of third and fourth order 
terms to the Taylor expansion of the energy in 
terms of the atomic displacements (and the corres­
ponding contributions to the pressure and bulk 
modulus). 

The equations for calculating this higher-order 
contribution from a lattice model are given in detail 
by Wallace [40]. Cowley [7] has carried out the 
calculation for NaCI and showed that the contribu-
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tion is negligible below 2000K and significant above 
500°K. In the high temperature limit its contribution 
is proportional to T\ and 1D NaCI tends to 
counteract the quasi-harmonic thermal pressure. It 
has been shown [7, 23] that the neglect of this effect 
in NaCI causes unreasonably large calculated ther­
mal expansion at high temperature leading to a 
negative calculated value of K, at a temperature 
below the experimentally observed melting temper­
ature. This effect has been noted in the present 
quasi-harmonic calculation for fourteen alkali 
halides, implying that the error due to the neglect of 
this term will generally be a calculated pressure 
which is too large. 

4. FITTING THE MODEL PARAMETERS 

4.1 The input data 
The equilibrium condition, the elastic constants 

K , and C .. , their pressure derivatives (dK, /dP) and 
(dC44/dP), and the low and high frequency dielectric 
constants. Eo and E=, were used as input data. 

The input data was assembled from a variety of 
sources. When a choice had to be made, it was 
generally made on the basis of apparent accuracy , 
completeness of the data analysis, and the tabula­
tion within the paper of thermodynamic parameters 
necessary to the present calculation, such as 
temperature, lattice constant ro, and K,. For purely 

numerical reasons, the experimental (dK, /dP) and 
(dc .. /dP) were converted to volume derivatives 
using the isothermal bulk modulus cited in that 
reference. Due to the relatively large experimental 
uncertainty in the pressure derivatives this proce­
dure is essentially equivalent to using the pressure 
derivatives directly as input. The input data is given 
in Table 1. For completeness, C, and (dC, /dP) are 
also tabulated, although they were not used for 
input. In order to provide an estimate of how 
experimental errors affect the model parameters, 
four sets of input data were provided for NaC!. 

An iterative procedure was used to determine the 
parameters which provided a fit of the experimental 
input data to quantities calculated according to 
Sections 2 and 3. The inversion process could not 
be carried out for LiF and LiC!. The thermal effects 
calculated by the model were very strong, and the 
model may actually be unstable (K, < 0) for these 
compounds at room temperature without the inclu­
sion of higher order anharmonic effects. It is 
possible that a different iterative procedure would 
have given results for LiCI, but the strong deviation 
of LiF from the Cauchy relation would have made a 
fit impossible by any means. For purpose of 
comparison, thermal corrections to the pressure 
and elastic constants were made according to (9) to 
(12) of Ref. [21] using the temperature derivatives 

Table 1. Input data 

Elastic constants (kbar) 
Compound T OK ' o(A) K , C... C~ 

LiF 
LiC) 
LiBr 
LiJ 

NaF 
NaCI 
NaBr 
NaI 

KF 
KCI 
KBr 
KI 

RbF 
RbCI 
RbBr 
RbI 

NaCI (i) 
NaCI (ii) 
NaCl (iii) 

300 2·0132 
295 2·5698 
295 2·7507 
295 3·0114 

300 2·3165 
295 2·8 196 
295 2·9890 
298 3·2364 

295 2·6740 
295 3·1462 
300 3·3006 
298 3·5334 

295 2·8260 
298 3·2903 
298 3-4453 
298 3·6709 

696·4 
316·8 
255·9 
191 ·6 

482·0 
252 · 1 
206·4 
162·2 

316·0 
181 ·5 
148·63 
121 ·5 

277-2 
162·98 
136·58 
110·94 

636·8 
246 
193 
140·7 

282·2 
128·0 
99 
74·2 

125 
63·01 
50·8 
37·3 

92·5 
47·53 
38·40 
27·90 

300 2-82015 250·36 127·81 
295 2-81% 247·1 127·2 
195 2·8090 257·9 130·1 

*Not used as input data. 

330·7 
133 
104 
74·3 

366·0 
182·6 
146 
106·0 

255 
167·6 
144·95 
116·7 

206·5 
152· 18 
134·79 
109·77 

182-40 
182·1 
202·7 

Pressure derivatives 

5·14 
5·42 
5·39 
5·79 

5·18 
5·26 
5·29 
5-48 

5·26 
5·34 
5·381 
5·\0 

5·57 
5·35 
5·30 
5-41 

5·27 
5·27 
5·13 

c:.., 

1·38 
1·70 
1·80 
1·96 

0·205 
0·369 
0·46 
0·59 

- 0·43 
- 0·39 
- 0·328 
-0·227 

C~. 

3·62 
3·70 
3·75 
4·00 

4·79 
4·786 
4·83 
4·76 

5·25 
5·61 
5·684 
5·86 

- 0·70 4·93 
- 0·605 5·86 
-0·554 6·06 
- 0·494 6·12 

0·37 
0·37 
0·32 

4·92 
4·79 
4·76 

Ref. 

[41) 
[42, 43) 
[42, 43) 
[44, 43] 

[41] 
[22) 

[42,45] 
[18) 

[42, 45) 
[46] 
[47) 
[18] 

[42,48] 
[19] 
[19) 
[19] 

[49] 
[46) 
[46) 

Dielectric constants 
e~ eo Ref. 

1·92 
2·75 
3·16 
3·80 

1·74 
2·31 
2·62 
2·91 

1·85 
2·13 
2·33 
2·69 

1·93 
2·19 
2·33 
2·63 

2·31 
2·31 
2·31 

9·0357 
11·05 
12·1 
11 ·03 

5·0721 
5·8948 
6·3%8 
6·60 

6·05 
4·8147 
4·8749 
4·94 

5·91 
4·81 
4·64 
4·69 

[50,51] 
[50] 
[50) 
[50] 

[52,51] 
[52,51) 
[50, 51] 

[50] 

[50] 
[52, 51] 
[52, 51] 
[52, 53) 

[52,50) 
[52,53] 
[52,53] 
[52,53] 

4·8948 [52, 51] 
5·8948 [52, 51] 
5·8948 [52, 51] 

• 
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of the elastic constants from reference[42]. Then 
the P, (:44, and K could be fit to the model. There 
are not parameters which will fit the elastic con­
stants data of RbF, but the iterative procedure con­
verged close enough so that the calculated thermal 
properties still have some validity. 

4.2 The parameters 
The parameters are given in Table 2. For purpose 

of comparison, Mayer's[54] values of the van der 
Waals constant C are given and the electronic 
polarizabilities determined by Tessman, et al. [55] 
are compared to the model values given by Y ' e' /k. 

A simple theory of the forces in alkali halides 
might expect Z to be related to the electronegativ­
ity difference, b+- to be a constant, and the other 
parameters to be characteristic of the appropriate 
ion. Deviations from these relations might be due to 
an inherent defect in the potential function (2), the 
approximations made in treating thermal effects, 
perturbation of the ionic wavefunctions in a 
different way in different compounds, or errors in 
the input data. 

The expected trend of ionicity with elec­
tronegativity is absent. Instead, Z seems to depend 

mainly on the cation. In general the values are 
much closer to unity than might be expected from 
Pauling's [56] scale of ionicity. 

The parameter b+_ varies widely , in a large part 
because it appears in the energy equation as a 
mUltiplier of the exponential term. While b+_ varies 
by almost 70 per cent for the different sets of input 
data in NaCI, the factors which enter into equations 
for P, K and dK/d In V vary by only 7 per cent. A 
large part of the variation of b+_ between com­
pounds could be the result of experimental error. 

The parameter p_ varies in general by about 
±0·015 among compounds with the same anion. p+ 
is remarkably constant in the lithium and sodium 
halides in which the anion-anion forces are rela­
tively strong in relation to the anion-cation forces. 

The parameter C has a small effect relative to the 
exponential anion-anion term in the lithium-halides 
and NaF and its strong deviation here from what 
we might expect is not important. Except for KBr, 
KI and to a lesser extent NaI, the agreement with 
Mayer's [54] theory is rather good. 

The anion polarizability, Y ' e' /k has reasonable 
values for all compounds except LiF. The indi­
vidual values of Y and k are not determined very 

Table 2. Model parameters 

C(IO" rthd vm6
) 

This 

Electronic 
polarizability 
Y 'e'/k (A3

) 

This 
Compound Z b+_(IO- IO ergs) p_(A) p+(A) paper [54] Y k(lO° dyn/cm) paper [55] 

LiF* 0·803 97·6 0·108 0·064 - 10'0 
LiCI* 0·747 66·5 0·165 0·057 30·0 
LiBr 0·816 57·7 0· 190 0·062 \39·0 
LiI 0·808 70·2 0·204 0·064 247·0 

NaF 0·906 72-4 0· 123 0·096 - 1'0 
NaCI 0·900 33·0 0·193 0·097 105·0 
NaBr 0·866 38·9 0·205 0·093 185·0 
Nal 0·834 37·2 0·235 0·086 471·0 

KF 0·952 78·7 0·132 0·122 18·0 
KCI 0·966 70·0 0·175 0·131 100·0 
KBr 0·936 96·3 0·175 0·127 111 ·0 
KI 0·912 21·9 0·279 0·108 1056·0 

RbF+ 0·970 156·2 0·066 0·185 26·0 
RbCI 1·008 52-4 0·186 0·144 169·0 
RbBr 1·008 37·6 0·2 11 0·148 298·0 
RbI 0·992 35·7 0·239 0·145 601·0 

NaCI (i) 0 ·893 51·3 0·175 0·098 61·0 
NaCI (ii) 0·900 34·2 0·190 0·098 97·0 
NaCI (iii) 0·892 30·5 0·194 0·097 101 ·0 

*Thermal correction determined by method of Ref. (21). 
tInexact fit to elastic constants. 

JPCS Vol. 35, No. JO--D 

14·5 0·53 
111·0 0·93 
185 ·0 2·48 
378·0 2·13 

16·5 1·86 
117·0 2·67 
196·0 3·23 
392·0 3·54 

18·6 26·06 
131·0 3·85 
206·0 3·73 
400·0 3·16 

18·9 66·06 
130·0 4-47 
215·0 3-46 
428·0 3·37 

117·0 2·75 
117·0 2·65 
117·0 2·74 

(- 0·36) 
0·46 
3·17 
1-46 

6·21 
4·70 
5·09 
4·34 

776 ·0 
8·06 
5·79 
2·79 

3958·0 
9·17 
4·28 
2·90 

4·99 
4·60 
5·03 

- 1·746 0·91 
4·355 2·90 
4·509 4·14 
7·191 6·23 

1·29 1 1· 16 
3·509 3·26 
4·739 4·39 
6·896 6·26 

2·017 2·01 
4·252 4·17 
5·555 5·29 
3·579 7·39 

2·544 2·57 
5·021 4·71 
6·439 5·92 
9·085 8·09 

3·491 3·26 
3·514 3·26 
3·451 3·26 
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accurately due in part to the often large errors in 1'0. 

They are sometimes strongly influenced by the 
values of the nearest neighbor force constants. The 
physically unreasonable values of the shell charge 
Y for RbF and KF is probably a result of neglecting 
the cation polarizability which is actually larger 
than the anion polarizability in these two 
compounds [55]. 

The general form of the interatomic potential 
function (2) is confirmed by the more-or-Iess 
reasonable values of the parameters. Experimental 
errors in the input data can account for much of the 
unexpected variation of the parameters among the 
different compounds, but the present model is 
clearly not sufficient for RbF and LiF. 

4.3 The Cauchy failure 
Also of interest in the evaluation of the model is 

the degree to which the model calculations fail to fit 
the third elastic constant, C,. The parameter of 
greatest theoretical interest is the Cauchy failure , 
6. == C ' 2 - C .. - 2P which is equal to two-thirds of 
the calculated error in C,. It is well known that 
thermal effects contribute to the failure of the 
Cauchy relation in alkali halides. Because explicit 
thermal contributions have been calculated in the 
present paper, it is possible to isolate the portion of 

Table 3. Athermal Cauchy failure ii = 
C'2 - C .. - 2P and its pressure derivative 

ii (kbar) ll/~ dii/dP 

LiP" - 2\0·0 - 0·32 - 0·57 
LiCl* - 55 ·8 - 0·\9 - 0·75 
LiBr 7·3 0·03 0·34 
LiI ))·0 0·06 0·26 

NaF -48·9 - 0· \0 0·07 
NaCl - 1·1 0·00 -0·13 
NaBr 6·3 0·03 - 0·23 
Nal 14·1 0·09 - 0· )5 

KF 20·6 0·07 0·43 
KCl 5·1 0·03 0·15 
KBr - 0·4 0·00 0·20 
Kl 7·0 0·06 - 0·48 

RbF 50·4 0·19 1·24 
RbCl 14·6 0·09 0·18 
RbBr 10·3 0·08 -0·04 
RbI 11 ·1 0· 11 - 0·16 

NaCl (i) - 5·4 0·02 -0·02 
NaCl (ii) - 10·5 0·04 -0·26 
NaCl (iii) - 2·7 0·01 -0·20 

"Thermal contribution calculated by 
method of Ref. [21]. 

the Cauchy failure due to multi-body or noncentral 
forces. This athermal Cauchy failure, ~ is given in 
Table 3 as well as the dimensionless parameter 
~/ K, and the pressure derivative d~/dP. There 
seems to be a general trend of ~/ K, increasing in 
the sequences Li-Na-K-Rb and F-CI-Br-I. Trends 
in ~/dP may be largely masked beneath errors in 
the experimental data and in the calculated thermal 
contributions. Only for LiF, LiCI and perhaps NaF 
could the calculation be improved by the use of the 
breathing shell model. For the other alkali halides, 
~ has the wrong sign for the breathing shell model , 
or is virtually zero. 

5. COMPARISON WITH EXPERIMENT 
AT ZERO PRESSURE 

Model calculations were performed on a grid of 
closely spaced volume-temperature points. By in­
terpolating between tabulated values it was p6ssi­

' ble to determine the theoretical properties of the 
alkali halides at any desired pressure and tempera-
ture. Table 4 compares experimental and theoreti­
cal values of the Griineisen parameter, )'th, its iso­
thermal volume derivative, a In )' / a In V, and the 
adiabatic Anderson-Griineisen parameter, which 
is the dimensionless parameter related to the 
change of the adiabatic bulk modulus with tempera­
ture, 8, = -1 /({3B, )( aB, / aT)lp. The theoretical calcu­
lations of Barsch and Achar [13] and of Roberts 
and Ruppin[12] are also tabulated. Both of these 
calculations involved a sheU model whose parame­
ters were assumed to be quadratic in pressure and 
were fitted to the elastic and dielectric constants and 
their first and second pressure derivatives, and were 
hence limited to calculations at zero pressure. 

An error of about 10 per cent in )'th can be 
attributed to experimental errors in the input data. 
In LiBr and LiI and, to a lesser extent NaF, the 
higher order anharmonic terms are probably re­
sponsible for the strong deviation of theory from 
experiment. The large error in )'th calculated for 
KF, KBr, KI and RbI is unexplained by these 
factors . However the overall comparison with the 
calculations of other authors [3-11] is exceUent. 

Figure 1 compares theoretical values of the 
volume thermal expansion coefficient {3 of NaCI 
with experimental measurements of Meincke and 
Graham [57] and Leadbetter and Newsham [58] as a 
function of temperature at zero pressure. The 
results of the other alkali-halides are similar. At low 
temperatures there is good agreement between 
theoretical and experimental values of (3 (and 
hence )'th ) . Above a certain critical temperature 
(about 2000K for NaCI) , the values differ by an 
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Table 4. Comparison of experimental and theoretical values of a In 1'1 a In V and Il, at 295°K 

1' •• 
a In l' 
a In V 

Theory Experiment Theory 
This 

[a] paper [12] [13] 

LiBr 2·48 1·94 3·5 
LiI 2-38 2·19 3·4 

NaP 1·86 1·51 2·3 
NaCI 1·69 1·62 2·0 
NaBr 1·75 1·65 1·9 
NaI 1·72 1·71 1·9 1·44 0'05[f] 

KF 1·71 1·52 2·4 
KCI 1·59 1·49 2·1 1·64 
KBr 1·69 1·50 2-0 
KI 1·27 1·54 2·0 1·37 - 0-40[f] 

RbF 1·66 1·40 2·9 
RbCI 1·45 1·39 2·2 1·82 1'44[f] 
RbBr 1·37 1-42 2·2 1-86 1'09[f] 
RbI 1·32 1·56 2·4 1·91 0·12[f] 

NaCI (i) 1·70 
NaCI (ij) 1·82 
NaCI (iii) 1-70 

[a] Tabulated in Refs. [43, 45, 48]. 
[b] Tabulated in Ref. [12]. 
[c] Tabulated in Ref. [13]. 
[d] Calculated from data in Refs. [43, 42]_ 
[e] Calculated from data in Refs. [43, 44]. 
[f] Calculated at V(P = 0, T = 0). 
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Fig. 1. Coefficient of thermal expansion in NaCI as a 
function of temperature. -- lattice model calculation. 

Experimental data: 0 Ref. [58], l::. Ref. [57]. 

Il, 

Experiment Theory Experiment 
This 

[b] [c] paper [13] [b] [c] 

2'O[d] 8·7 4'I[d] 
1·9[e] 8-4 4·0[e] 

1·22 5·3 3·75 
1-40 4·8 3·87 
1·75 4·8 4·]3 
1·77 0'67[f] 4·6 2·58[f] 4·16 3·22 

1·57 5·3 4·12 
1·77 4-9 4-41 
1-37 5-1 4·05 
1-26 0'47[f] 4·7 2' 14[f] 3·98 2·94 

2·07 5·7 5·05 
2·14 1'92[f] 5·0 4'06[f] 5·02 4'68[f] 
1·99 1'58[f] 4-9 3'74[f] 4·81 4'44[f] 
1·91 1·34[f] 5·1 3·05[f] 4-35 4·IO[f] 

4·8 
5·1 
4·8 

amount which increases with temperature . The in­
clusion of higher order anharmonic terms would 
help to correct this problem [7]. 

The predictions of a In 'Y I a In V are in general 
better than those of Barsch and Achar [13] , but 
somewhat worse than those of Roberts and 
Ruppin [12]. The large errors for LiBr, LiI, NaF and 
NaCI are probably a result of the neglected anhar­
monic terms. While this correction would also 
improve the calculated results for the other alkali 
halides, it is unlikely to be large enough to bring 
them into agreement. 

0, does not depend as strongly on thermal effects 
as does a In 'Y I a In V. The present calculation is in 
better agreement with experiment than that of 
Ref. [13], although the error is somewhat larger than 
expected. 

Most of the experimental and theoretical values 
for a In 'Y I a In V and 0, from Ref. [13] refer to a 
slightly contracted volume corresponding to P = 0 
at T = O. The correction back to zero pressure at 
room temperature is smaller than the experimental 
error in these quantities. 
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6. CALCULATIONS AT fiGH PRESSURE 

6.1 The behavior of y at high pressure 
Uncertainty as to the variation of the Grtineisen 

parameter with volume is a major problem in high 
pressure physics. Figure 2 plots the present model 
calculation of y along the Hugoniot as a function of 
volume for fourteen alkali halides. The different 
plots are displaced vertically for clarity on this 
log-log graph. 

'" o 
..J 

ViVo 

Fig. 2. Model calculation of the Griineisen parameter as a 
function of volume for fourteen alkali halides. Graphs are 

displaced vertically for clarity. 

Three different types of behavior of y(V) can be 
seen. They are: 

(i) An initial steep slope caused essentially by 
the fact that under pressure the coulombic forces 
increase less rapidly than the short range forces. 
This effect is most noticeable in LiBr, LiI and NaF, 
but is mostly canceled by other factors in the other 
alkali halides. 

eii) A region of nearly linear decrease, with a 
relatively shallow slope. 

(iii) Another region of sharp decrease, arising 
from soft modes. 

The third region is a precursor of an instability 
caused by a zero frequency transverse acoustic 
mode occuring, in the present model calculation, in 
the (1,0, 0) direction at the Brillouin Zone bound­
ary. In actual practice, a phase transition to the 
B2(CsCI) structure occurs before this steep dip is 
too pronounced. However, the soft modes are also 
important in determining the slope in region (ii) and 
in counteracting the coulomb effect in region (i). 

The calculated instabilities are generally consis­
tent with known transitions that occur under pres­
sure, although the calculated instabilities in NaBr 
(P = 265 kbar, V / V o = 0·65) and NaI (P = 150 kbar, 
V / V o = 0·69) seem suspiciously low, and it is 
unlikely that there exist undiscovered transitions at 
such easily accessible pressures in such common 
compounds. 

It is interesting to note that according to the 
present model, for all alkali-halides the assumption 
that y = Yo( V / V o)q with q = 1· 75 or 2·0 would only 
be in error by about 10%, from zero pressure 
up to the region of a transition. Other simple as­
sumptions such as that made by finite strain 
theory [24, 27] may be equally valid. However set­
ting q equal to the zero pressure slope of y in LiBr, 
LiI, and NaP might lead to a serious underestima­
tion of y at high compression. 

Previous calculations of this type used a 
six-twelve anion-anion interaction [23]. In these 
calculations, there was no instability at high pres­
sure in the sodium halides, and ")I (V) decreased to a 
minimum and then increased under pressure. This 
strange behavior of y(V) was a result of two 
related factors: a lack of mode softening under 
pressure, and an anion-anion force of the power 
law form, which increased in strength faster than 
the anion-cation exponential force. 

While the present model calculations are more 
likely to be valid than the previous ones, there may 
exist crystals in which there are no soft modes over 
a wide pressure range, and in which one type of 
short-range force gradually becomes dominant over 
another. Although 'Y probably behaves monotoni­
cally in all the NaCI type alkali halides, it may have 
a local minimum in some crystals . It has generally 
been assumed that y(V) is a smooth monotonic 
function. A more fundamental assumption is that 
the potential function be composed of terms which 
are smooth fUnctions of interatomic separation. 
This type of assumption does not necessarily imply 
that y (V) will behave monotonically. A y (V) 
which has a local minimum may be unusual, but it is 
not unreasonable. 
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6.2 Calculation of Hugoniots 
The most accurate information on solids at high 

pressure is available from shock wave experiments. 
The relevant equations are well known [59] 

)PI -PO 
Us = Vo Vo- V, (11) 

( 12) 

and 

(13) 

where Us is the shock velocity, Up is the particle 
velocity, and the subscripts 0 and I refer to the 
initial and final states, respectively. 

At a given volume, equation (13) was solved 
numerically using tabulated values of peT) and 
B(T) from (5) and (6). The calculated pressure was 
then inserted into (II) and (12) giving the theoreti­
cal Hugoniot curve in the shock-particle velocity 
plane. These theoretical curves are plotted along 
with the experimental data from Refs. [60-64] for 
LiBr, LiI, NaF, NaCl, NaBr and NaI in Figs. 3-8. 
In most cases, Hugoniots corresponding to zero 
and two percent porosity are plotted. Data of 
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Fig. 3. Hugoniot of LiBr. --lattice model calculation. 
--- model calculation for 2 per cent porous sample. 0 
Single Crystal Experiment[60]; • Pressed Sample[61], 

corrected to single crystal Hugoniot. 
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Fig. 4. Hugoniot of LiI. -- lattice model calculation. 
--- model calculation for 24 porous sample. 0 Single 
crystal experiment[61],. Pressed sample [62], corrected 

to single crystal Hugoniot. 
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Fig. 5. Hugoniot of NaF. --lattice model calculation . 
--- model calculation for 2 per cent porous sample. 0 
Single crystal experiment [60]. • Pressed sample [61], cor-

rected to single crystal Hugoniot. 
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Fig. 6. Hugoniot of NaC!. -- lattice model calcula­
tion. 0 Single crystal data [63]. 
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Fig. 7. Hugoniot of NaBr. --- lattice model calcula­
tion. --- model calculation for 2 per cent porous sample. 
• experimental data from pressed sample [61], corrected 

to zero porosity. 
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Fig. 8. Hugoniot of Nal. --lattice model calculation . 
• Single crystal data [61]. 0 single crystal data [64]. 

porous samples was corrected to a zero porosity 
Hugoniot in a manner consistant with the present 
model calculations, with a line on the graph indicat­
ing the correction. The error bars refer to a nominal 
1 per cent error in u,. 

Because the calculated 'Y at room temperature is 
too large, the calculated Hugoniot of LiBr and LiI 
should not be very accurate. The experimental data 
is sparse and scattered, and does not contradict the 
present calculation at compressions of less than 
~ VIVo = 0·25. 

The new Hugoniot data for NaF (Fig. 5) shows a 
phase change initiating at a pressure somewhere be­
tween 210 and 270 kbar on the Hugoniot. The 
possibility of a phase change at this point was 
recently suggested by Ahrens and Thomsen [27] on 
the basis of Christian's [61] single data point falling 
within the transition region. Just prior to the 
transition, the Hugoniot prediction of the present 
lattice model calculation is slightly more accurate 
than the prediction of Ahrens and Thomsen based 
on finite strain theory [27]. 

In NaCI (Fig. 6), the predictions of lattice theory 
and finite strain theory [27] are both fairly accurate 
up to the phase transition, which occurs at a 
compression of about 0·35 . 

The predicted Hugoniots in NaBr and NaI are in 

• 
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excellent agreement with experiment, more so than 
the finite strain theory predictions. The calculated 
instabilities prevented comparison with experiment 
at compressions higher than those plotted 
(A V!Vo = 0·33 and 0·28 respectively). 

7. CONCLUSIONS 

The present quasi-harmonic lattice model calcula­
tions provide a self-consistent framework for the 
calculation of macroscopic physical properties of 
crystals at arbitrary pressure and temperature. The 
calculated Griineisen y, a In y! a In V, and a, are in 
reasonable agreement with experiment for most 
alkali halides . The inclusion of higher order anhar­
monic terms would improve the situation. The 
variation of y with volume is initially dominated by 
coulomb effects. At very modest compressions this 
effect suddenly diminishes and y(V) is controlled 
mainly by the short range portion of the interatomic 
potential. Although simple analytic functions can 
adequately describe y(V) , the presence of coulomb 
effects at zero pressure makes it difficult to 
extrapolate smoothly through this region of sudden 
change using low pressure experimental data . 

The model calculations are in good agreement 
with experimental Hugoniots in cases for which the 
quasiharmonic theory was adequate at room temp­
erature (NaCI , NaBr and NaI). The agreement is 
worse in cases for which anharmonic effects are 
important at room temperature (LiBr, LiI and 
NaF). In all cases the present theory compares 
favorably with recent finite strain theory calcula­
tions. 
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